1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
// Copyright 2023 The Fuchsia Authors
//
// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
// This file may not be copied, modified, or distributed except according to
// those terms.
#[path = "third_party/rust/layout.rs"]
pub(crate) mod core_layout;
use core::{mem, num::NonZeroUsize};
pub(crate) mod ptr {
use core::{
fmt::{Debug, Formatter},
marker::PhantomData,
ptr::NonNull,
};
use crate::{util::AsAddress, KnownLayout, _CastType};
/// A raw pointer with more restrictions.
///
/// `Ptr<T>` is similar to `NonNull<T>`, but it is more restrictive in the
/// following ways:
/// - It must derive from a valid allocation
/// - It must reference a byte range which is contained inside the
/// allocation from which it derives
/// - As a consequence, the byte range it references must have a size
/// which does not overflow `isize`
/// - It must satisfy `T`'s alignment requirement
///
/// Thanks to these restrictions, it is easier to prove the soundness of
/// some operations using `Ptr`s.
///
/// `Ptr<'a, T>` is [covariant] in `'a` and `T`.
///
/// [covariant]: https://doc.rust-lang.org/reference/subtyping.html
pub struct Ptr<'a, T: 'a + ?Sized> {
// INVARIANTS:
// 1. `ptr` is derived from some valid Rust allocation, `A`
// 2. `ptr` has the same provenance as `A`
// 3. `ptr` addresses a byte range which is entirely contained in `A`
// 4. `ptr` addresses a byte range whose length fits in an `isize`
// 5. `ptr` addresses a byte range which does not wrap around the address
// space
// 6. `ptr` is validly-aligned for `T`
// 7. `A` is guaranteed to live for at least `'a`
// 8. `T: 'a`
ptr: NonNull<T>,
_lifetime: PhantomData<&'a ()>,
}
impl<'a, T: ?Sized> Copy for Ptr<'a, T> {}
impl<'a, T: ?Sized> Clone for Ptr<'a, T> {
#[inline]
fn clone(&self) -> Self {
*self
}
}
impl<'a, T: ?Sized> Ptr<'a, T> {
/// Returns a shared reference to the value.
///
/// # Safety
///
/// For the duration of `'a`:
/// - The referenced memory must contain a validly-initialized `T` for
/// the duration of `'a`.
/// - The referenced memory must not also be referenced by any mutable
/// references.
/// - The referenced memory must not be mutated, even via an
/// [`UnsafeCell`].
/// - There must not exist any references to the same memory region
/// which contain `UnsafeCell`s at byte ranges which are not identical
/// to the byte ranges at which `T` contains `UnsafeCell`s.
///
/// [`UnsafeCell`]: core::cell::UnsafeCell
// TODO(#429): The safety requirements are likely overly-restrictive.
// Notably, mutation via `UnsafeCell`s is probably fine. Once the rules
// are more clearly defined, we should relax the safety requirements.
// For an example of why this is subtle, see:
// https://github.com/rust-lang/unsafe-code-guidelines/issues/463#issuecomment-1736771593
#[allow(unused)]
pub(crate) unsafe fn as_ref(&self) -> &'a T {
// SAFETY:
// - By invariant, `self.ptr` is properly-aligned for `T`.
// - By invariant, `self.ptr` is "dereferenceable" in that it points
// to a single allocation.
// - By invariant, the allocation is live for `'a`.
// - The caller promises that no mutable references exist to this
// region during `'a`.
// - The caller promises that `UnsafeCell`s match exactly.
// - The caller promises that no mutation will happen during `'a`,
// even via `UnsafeCell`s.
// - The caller promises that the memory region contains a
// validly-intialized `T`.
unsafe { self.ptr.as_ref() }
}
/// Casts to a different (unsized) target type.
///
/// # Safety
///
/// The caller promises that
/// - `cast(p)` is implemented exactly as follows: `|p: *mut T| p as
/// *mut U`.
/// - The size of the object referenced by the resulting pointer is less
/// than or equal to the size of the object referenced by `self`.
/// - The alignment of `U` is less than or equal to the alignment of
/// `T`.
pub(crate) unsafe fn cast_unsized<U: 'a + ?Sized, F: FnOnce(*mut T) -> *mut U>(
self,
cast: F,
) -> Ptr<'a, U> {
let ptr = cast(self.ptr.as_ptr());
// SAFETY: Caller promises that `cast` is just an `as` cast. We call
// `cast` on `self.ptr.as_ptr()`, which is non-null by construction.
let ptr = unsafe { NonNull::new_unchecked(ptr) };
// SAFETY:
// - By invariant, `self.ptr` is derived from some valid Rust
// allocation, and since `ptr` is just `self.ptr as *mut U`, so is
// `ptr`.
// - By invariant, `self.ptr` has the same provenance as `A`, and so
// the same is true of `ptr`.
// - By invariant, `self.ptr` addresses a byte range which is
// entirely contained in `A`, and so the same is true of `ptr`.
// - By invariant, `self.ptr` addresses a byte range whose length
// fits in an `isize`, and so the same is true of `ptr`.
// - By invariant, `self.ptr` addresses a byte range which does not
// wrap around the address space, and so the same is true of
// `ptr`.
// - By invariant, `self.ptr` is validly-aligned for `T`. Since
// `ptr` has the same address, and since the caller promises that
// the alignment of `U` is less than or equal to the alignment of
// `T`, `ptr` is validly-aligned for `U`.
// - By invariant, `A` is guaranteed to live for at least `'a`.
// - `U: 'a`
Ptr { ptr, _lifetime: PhantomData }
}
}
impl<'a> Ptr<'a, [u8]> {
/// Attempts to cast `self` to a `U` using the given cast type.
///
/// Returns `None` if the resulting `U` would be invalidly-aligned or if
/// no `U` can fit in `self`. On success, returns a pointer to the
/// largest-possible `U` which fits in `self`.
///
/// # Safety
///
/// The caller may assume that this implementation is correct, and may
/// rely on that assumption for the soundness of their code. In
/// particular, the caller may assume that, if `try_cast_into` returns
/// `Some((ptr, split_at))`, then:
/// - If this is a prefix cast, `ptr` refers to the byte range `[0,
/// split_at)` in `self`.
/// - If this is a suffix cast, `ptr` refers to the byte range
/// `[split_at, self.len())` in `self`.
///
/// # Panics
///
/// Panics if `U` is a DST whose trailing slice element is zero-sized.
pub(crate) fn try_cast_into<U: 'a + ?Sized + KnownLayout>(
&self,
cast_type: _CastType,
) -> Option<(Ptr<'a, U>, usize)> {
// PANICS: By invariant, the byte range addressed by `self.ptr` does
// not wrap around the address space. This implies that the sum of
// the address (represented as a `usize`) and length do not overflow
// `usize`, as required by `validate_cast_and_convert_metadata`.
// Thus, this call to `validate_cast_and_convert_metadata` won't
// panic.
let (elems, split_at) = U::LAYOUT.validate_cast_and_convert_metadata(
AsAddress::addr(self.ptr.as_ptr()),
self.len(),
cast_type,
)?;
let offset = match cast_type {
_CastType::_Prefix => 0,
_CastType::_Suffix => split_at,
};
let ptr = self.ptr.cast::<u8>().as_ptr();
// SAFETY: `offset` is either `0` or `split_at`.
// `validate_cast_and_convert_metadata` promises that `split_at` is
// in the range `[0, self.len()]`. Thus, in both cases, `offset` is
// in `[0, self.len()]`. Thus:
// - The resulting pointer is in or one byte past the end of the
// same byte range as `self.ptr`. Since, by invariant, `self.ptr`
// addresses a byte range entirely contained within a single
// allocation, the pointer resulting from this operation is within
// or one byte past the end of that same allocation.
// - By invariant, `self.len() <= isize::MAX`. Since `offset <=
// self.len()`, `offset <= isize::MAX`.
// - By invariant, `self.ptr` addresses a byte range which does not
// wrap around the address space. This means that the base pointer
// plus the `self.len()` does not overflow `usize`. Since `offset
// <= self.len()`, this addition does not overflow `usize`.
let base = unsafe { ptr.add(offset) };
// SAFETY: Since `add` is not allowed to wrap around, the preceding line
// produces a pointer whose address is greater than or equal to that of
// `ptr`. Since `ptr` is a `NonNull`, `base` is also non-null.
let base = unsafe { NonNull::new_unchecked(base) };
let ptr = U::raw_from_ptr_len(base, elems);
// SAFETY:
// - By invariant, `self.ptr` is derived from some valid Rust
// allocation, `A`, and has the same provenance as `A`. All
// operations performed on `self.ptr` and values derived from it
// in this method preserve provenance, so:
// - `ptr` is derived from a valid Rust allocation, `A`.
// - `ptr` has the same provenance as `A`.
// - `validate_cast_and_convert_metadata` promises that the object
// described by `elems` and `split_at` lives at a byte range which
// is a subset of the input byte range. Thus:
// - Since, by invariant, `self.ptr` addresses a byte range
// entirely contained in `A`, so does `ptr`.
// - Since, by invariant, `self.ptr` addresses a range whose
// length is not longer than `isize::MAX` bytes, so does `ptr`.
// - Since, by invariant, `self.ptr` addresses a range which does
// not wrap around the address space, so does `ptr`.
// - `validate_cast_and_convert_metadata` promises that the object
// described by `split_at` is validly-aligned for `U`.
// - By invariant on `self`, `A` is guaranteed to live for at least
// `'a`.
// - `U: 'a` by trait bound.
Some((Ptr { ptr, _lifetime: PhantomData }, split_at))
}
/// Attempts to cast `self` into a `U`, failing if all of the bytes of
/// `self` cannot be treated as a `U`.
///
/// In particular, this method fails if `self` is not validly-aligned
/// for `U` or if `self`'s size is not a valid size for `U`.
///
/// # Safety
///
/// On success, the caller may assume that the returned pointer
/// references the same byte range as `self`.
#[allow(unused)]
#[inline(always)]
pub(crate) fn try_cast_into_no_leftover<U: 'a + ?Sized + KnownLayout>(
&self,
) -> Option<Ptr<'a, U>> {
// TODO(#67): Remove this allow. See NonNulSlicelExt for more
// details.
#[allow(unstable_name_collisions)]
match self.try_cast_into(_CastType::_Prefix) {
Some((slf, split_at)) if split_at == self.len() => Some(slf),
Some(_) | None => None,
}
}
}
impl<'a, T> Ptr<'a, [T]> {
/// The number of slice elements referenced by `self`.
///
/// # Safety
///
/// Unsafe code my rely on `len` satisfying the above contract.
fn len(&self) -> usize {
#[allow(clippy::as_conversions)]
let slc = self.ptr.as_ptr() as *const [()];
// SAFETY:
// - `()` has alignment 1, so `slc` is trivially aligned.
// - `slc` was derived from a non-null pointer.
// - The size is 0 regardless of the length, so it is sound to
// materialize a reference regardless of location.
// - By invariant, `self.ptr` has valid provenance.
let slc = unsafe { &*slc };
// This is correct because the preceding `as` cast preserves the
// number of slice elements. Per
// https://doc.rust-lang.org/nightly/reference/expressions/operator-expr.html#slice-dst-pointer-to-pointer-cast:
//
// For slice types like `[T]` and `[U]`, the raw pointer types
// `*const [T]`, `*mut [T]`, `*const [U]`, and `*mut [U]` encode
// the number of elements in this slice. Casts between these raw
// pointer types preserve the number of elements. Note that, as a
// consequence, such casts do *not* necessarily preserve the size
// of the pointer's referent (e.g., casting `*const [u16]` to
// `*const [u8]` will result in a raw pointer which refers to an
// object of half the size of the original). The same holds for
// `str` and any compound type whose unsized tail is a slice type,
// such as struct `Foo(i32, [u8])` or `(u64, Foo)`.
//
// TODO(#429),
// TODO(https://github.com/rust-lang/reference/pull/1417): Once this
// text is available on the Stable docs, cite those instead of the
// Nightly docs.
slc.len()
}
pub(crate) fn iter(&self) -> impl Iterator<Item = Ptr<'a, T>> {
// TODO(#429): Once `NonNull::cast` documents that it preserves
// provenance, cite those docs.
let base = self.ptr.cast::<T>().as_ptr();
(0..self.len()).map(move |i| {
// TODO(https://github.com/rust-lang/rust/issues/74265): Use
// `NonNull::get_unchecked_mut`.
// SAFETY: If the following conditions are not satisfied
// `pointer::cast` may induce Undefined Behavior [1]:
// > 1. Both the starting and resulting pointer must be either
// > in bounds or one byte past the end of the same allocated
// > object.
// > 2. The computed offset, in bytes, cannot overflow an
// > `isize`.
// > 3. The offset being in bounds cannot rely on “wrapping
// > around” the address space. That is, the
// > infinite-precision sum must fit in a `usize`.
//
// [1] https://doc.rust-lang.org/std/primitive.pointer.html#method.add
//
// We satisfy all three of these conditions here:
// 1. `base` (by invariant on `self`) points to an allocated
// object. By contract, `self.len()` accurately reflects the
// number of elements in the slice. `i` is in bounds of
// `c.len()` by construction, and so the result of this
// addition cannot overflow past the end of the allocation
// referred to by `c`.
// 2. By invariant on `Ptr`, `self` addresses a byte range whose
// length fits in an `isize`. Since `elem` is contained in
// `self`, the computed offset of `elem` must fit within
// `isize.`
// 3. By invariant on `Ptr`, `self` addresses a byte range which
// does not wrap around the address space. Since `elem` is
// contained in `self`, the computed offset of `elem` must
// wrap around the address space.
//
// TODO(#429): Once `pointer::add` documents that it preserves
// provenance, cite those docs.
let elem = unsafe { base.add(i) };
// SAFETY:
// - `elem` must not be null. `base` is constructed from a
// `NonNull` pointer, and the addition that produces `elem`
// must not overflow or wrap around, so `elem >= base > 0`.
//
// TODO(#429): Once `NonNull::new_unchecked` documents that it
// preserves provenance, cite those docs.
let elem = unsafe { NonNull::new_unchecked(elem) };
// SAFETY: The safety invariants of `Ptr` (see definition) are
// satisfied:
// 1. `elem` is derived from a valid Rust allocation, because
// `self` is derived from a valid Rust allocation, by
// invariant on `Ptr`
// 2. `elem` has the same provenance as `self`, because it
// derived from `self` using a series of
// provenance-preserving operations
// 3. `elem` is entirely contained in the allocation of `self`
// (see above)
// 4. `elem` addresses a byte range whose length fits in an
// `isize` (see above)
// 5. `elem` addresses a byte range which does not wrap around
// the address space (see above)
// 6. `elem` is validly-aligned for `T`. `self`, which
// represents a `[T]` is validly aligned for `T`, and `elem`
// is an element within that `[T]`
// 7. The allocation of `elem` is guaranteed to live for at
// least `'a`, because `elem` is entirely contained in
// `self`, which lives for at least `'a` by invariant on
// `Ptr`.
// 8. `T: 'a`, because `elem` is an element within `[T]`, and
// `[T]: 'a` by invariant on `Ptr`
Ptr { ptr: elem, _lifetime: PhantomData }
})
}
}
impl<'a, T: 'a + ?Sized> From<&'a T> for Ptr<'a, T> {
#[inline(always)]
fn from(t: &'a T) -> Ptr<'a, T> {
// SAFETY: `t` points to a valid Rust allocation, `A`, by
// construction. Thus:
// - `ptr` is derived from `A`
// - Since we use `NonNull::from`, which preserves provenance, `ptr`
// has the same provenance as `A`
// - Since `NonNull::from` creates a pointer which addresses the
// same bytes as `t`, `ptr` addresses a byte range entirely
// contained in (in this case, identical to) `A`
// - Since `t: &T`, it addresses no more than `isize::MAX` bytes [1]
// - Since `t: &T`, it addresses a byte range which does not wrap
// around the address space [2]
// - Since it is constructed from a valid `&T`, `ptr` is
// validly-aligned for `T`
// - Since `t: &'a T`, the allocation `A` is guaranteed to live for
// at least `'a`
// - `T: 'a` by trait bound
//
// TODO(#429),
// TODO(https://github.com/rust-lang/rust/issues/116181): Once it's
// documented, reference the guarantee that `NonNull::from`
// preserves provenance.
//
// TODO(#429),
// TODO(https://github.com/rust-lang/unsafe-code-guidelines/issues/465):
// - [1] Where does the reference document that allocations fit in
// `isize`?
// - [2] Where does the reference document that allocations don't
// wrap around the address space?
Ptr { ptr: NonNull::from(t), _lifetime: PhantomData }
}
}
impl<'a, T: 'a + ?Sized> Debug for Ptr<'a, T> {
#[inline]
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
self.ptr.fmt(f)
}
}
#[cfg(test)]
mod tests {
use core::mem::{self, MaybeUninit};
use super::*;
use crate::{util::testutil::AU64, FromBytes};
#[test]
fn test_ptrtry_cast_into_soundness() {
// This test is designed so that if `Ptr::try_cast_into_xxx` are
// buggy, it will manifest as unsoundness that Miri can detect.
// - If `size_of::<T>() == 0`, `N == 4`
// - Else, `N == 4 * size_of::<T>()`
fn test<const N: usize, T: ?Sized + KnownLayout + FromBytes>() {
let mut bytes = [MaybeUninit::<u8>::uninit(); N];
let initialized = [MaybeUninit::new(0u8); N];
for start in 0..=bytes.len() {
for end in start..=bytes.len() {
// Set all bytes to uninitialized other than those in
// the range we're going to pass to `try_cast_from`.
// This allows Miri to detect out-of-bounds reads
// because they read uninitialized memory. Without this,
// some out-of-bounds reads would still be in-bounds of
// `bytes`, and so might spuriously be accepted.
bytes = [MaybeUninit::<u8>::uninit(); N];
let bytes = &mut bytes[start..end];
// Initialize only the byte range we're going to pass to
// `try_cast_from`.
bytes.copy_from_slice(&initialized[start..end]);
let bytes = {
let bytes: *const [MaybeUninit<u8>] = bytes;
#[allow(clippy::as_conversions)]
let bytes = bytes as *const [u8];
// SAFETY: We just initialized these bytes to valid
// `u8`s.
unsafe { &*bytes }
};
/// # Safety
///
/// - `slf` must reference a byte range which is
/// entirely initialized.
/// - `slf` must reference a byte range which is only
/// referenced by shared references which do not
/// contain `UnsafeCell`s during its lifetime.
unsafe fn validate_and_get_len<T: ?Sized + KnownLayout + FromBytes>(
slf: Ptr<'_, T>,
) -> usize {
// SAFETY:
// - Since all bytes in `slf` are initialized and
// `T: FromBytes`, `slf` contains a valid `T`.
// - The caller promises that the referenced memory
// is not also referenced by any mutable
// references.
// - The caller promises that the referenced memory
// is not also referenced as a type which contains
// `UnsafeCell`s.
let t = unsafe { slf.as_ref() };
let bytes = {
let len = mem::size_of_val(t);
let t: *const T = t;
// SAFETY:
// - We know `t`'s bytes are all initialized
// because we just read it from `slf`, which
// points to an initialized range of bytes. If
// there's a bug and this doesn't hold, then
// that's exactly what we're hoping Miri will
// catch!
// - Since `T: FromBytes`, `T` doesn't contain
// any `UnsafeCell`s, so it's okay for `t: T`
// and a `&[u8]` to the same memory to be
// alive concurrently.
unsafe { core::slice::from_raw_parts(t.cast::<u8>(), len) }
};
// This assertion ensures that `t`'s bytes are read
// and compared to another value, which in turn
// ensures that Miri gets a chance to notice if any
// of `t`'s bytes are uninitialized, which they
// shouldn't be (see the comment above).
assert_eq!(bytes, vec![0u8; bytes.len()]);
mem::size_of_val(t)
}
for cast_type in [_CastType::_Prefix, _CastType::_Suffix] {
if let Some((slf, split_at)) =
Ptr::from(bytes).try_cast_into::<T>(cast_type)
{
// SAFETY: All bytes in `bytes` have been
// initialized.
let len = unsafe { validate_and_get_len(slf) };
match cast_type {
_CastType::_Prefix => assert_eq!(split_at, len),
_CastType::_Suffix => assert_eq!(split_at, bytes.len() - len),
}
}
}
if let Some(slf) = Ptr::from(bytes).try_cast_into_no_leftover::<T>() {
// SAFETY: All bytes in `bytes` have been
// initialized.
let len = unsafe { validate_and_get_len(slf) };
assert_eq!(len, bytes.len());
}
}
}
}
macro_rules! test {
($($ty:ty),*) => {
$({
const S: usize = core::mem::size_of::<$ty>();
const N: usize = if S == 0 { 4 } else { S * 4 };
test::<N, $ty>();
// We don't support casting into DSTs whose trailing slice
// element is a ZST.
if S > 0 {
test::<N, [$ty]>();
}
// TODO: Test with a slice DST once we have any that
// implement `KnownLayout + FromBytes`.
})*
};
}
test!(());
test!(u8, u16, u32, u64, u128, usize, AU64);
test!(i8, i16, i32, i64, i128, isize);
test!(f32, f64);
}
}
}
pub(crate) trait AsAddress {
fn addr(self) -> usize;
}
impl<'a, T: ?Sized> AsAddress for &'a T {
#[inline(always)]
fn addr(self) -> usize {
let ptr: *const T = self;
AsAddress::addr(ptr)
}
}
impl<'a, T: ?Sized> AsAddress for &'a mut T {
#[inline(always)]
fn addr(self) -> usize {
let ptr: *const T = self;
AsAddress::addr(ptr)
}
}
impl<T: ?Sized> AsAddress for *const T {
#[inline(always)]
fn addr(self) -> usize {
// TODO(#181), TODO(https://github.com/rust-lang/rust/issues/95228): Use
// `.addr()` instead of `as usize` once it's stable, and get rid of this
// `allow`. Currently, `as usize` is the only way to accomplish this.
#[allow(clippy::as_conversions)]
#[cfg_attr(__INTERNAL_USE_ONLY_NIGHLTY_FEATURES_IN_TESTS, allow(lossy_provenance_casts))]
return self.cast::<()>() as usize;
}
}
impl<T: ?Sized> AsAddress for *mut T {
#[inline(always)]
fn addr(self) -> usize {
let ptr: *const T = self;
AsAddress::addr(ptr)
}
}
/// Is `t` aligned to `mem::align_of::<U>()`?
#[inline(always)]
pub(crate) fn aligned_to<T: AsAddress, U>(t: T) -> bool {
// `mem::align_of::<U>()` is guaranteed to return a non-zero value, which in
// turn guarantees that this mod operation will not panic.
#[allow(clippy::arithmetic_side_effects)]
let remainder = t.addr() % mem::align_of::<U>();
remainder == 0
}
/// Round `n` down to the largest value `m` such that `m <= n` and `m % align ==
/// 0`.
///
/// # Panics
///
/// May panic if `align` is not a power of two. Even if it doesn't panic in this
/// case, it will produce nonsense results.
#[inline(always)]
pub(crate) const fn round_down_to_next_multiple_of_alignment(
n: usize,
align: NonZeroUsize,
) -> usize {
let align = align.get();
debug_assert!(align.is_power_of_two());
// Subtraction can't underflow because `align.get() >= 1`.
#[allow(clippy::arithmetic_side_effects)]
let mask = !(align - 1);
n & mask
}
pub(crate) const fn max(a: NonZeroUsize, b: NonZeroUsize) -> NonZeroUsize {
if a.get() < b.get() {
b
} else {
a
}
}
pub(crate) const fn min(a: NonZeroUsize, b: NonZeroUsize) -> NonZeroUsize {
if a.get() > b.get() {
b
} else {
a
}
}
/// Since we support multiple versions of Rust, there are often features which
/// have been stabilized in the most recent stable release which do not yet
/// exist (stably) on our MSRV. This module provides polyfills for those
/// features so that we can write more "modern" code, and just remove the
/// polyfill once our MSRV supports the corresponding feature. Without this,
/// we'd have to write worse/more verbose code and leave TODO comments sprinkled
/// throughout the codebase to update to the new pattern once it's stabilized.
///
/// Each trait is imported as `_` at the crate root; each polyfill should "just
/// work" at usage sites.
pub(crate) mod polyfills {
use core::ptr::{self, NonNull};
// A polyfill for `NonNull::slice_from_raw_parts` that we can use before our
// MSRV is 1.70, when that function was stabilized.
//
// TODO(#67): Once our MSRV is 1.70, remove this.
pub(crate) trait NonNullExt<T> {
fn slice_from_raw_parts(data: Self, len: usize) -> NonNull<[T]>;
}
impl<T> NonNullExt<T> for NonNull<T> {
#[inline(always)]
fn slice_from_raw_parts(data: Self, len: usize) -> NonNull<[T]> {
let ptr = ptr::slice_from_raw_parts_mut(data.as_ptr(), len);
// SAFETY: `ptr` is converted from `data`, which is non-null.
unsafe { NonNull::new_unchecked(ptr) }
}
}
}
#[cfg(test)]
pub(crate) mod testutil {
use core::fmt::{self, Display, Formatter};
use crate::*;
/// A `T` which is aligned to at least `align_of::<A>()`.
#[derive(Default)]
pub(crate) struct Align<T, A> {
pub(crate) t: T,
_a: [A; 0],
}
impl<T: Default, A> Align<T, A> {
pub(crate) fn set_default(&mut self) {
self.t = T::default();
}
}
impl<T, A> Align<T, A> {
pub(crate) const fn new(t: T) -> Align<T, A> {
Align { t, _a: [] }
}
}
// A `u64` with alignment 8.
//
// Though `u64` has alignment 8 on some platforms, it's not guaranteed.
// By contrast, `AU64` is guaranteed to have alignment 8.
#[derive(
KnownLayout,
FromZeroes,
FromBytes,
AsBytes,
Eq,
PartialEq,
Ord,
PartialOrd,
Default,
Debug,
Copy,
Clone,
)]
#[repr(C, align(8))]
pub(crate) struct AU64(pub(crate) u64);
impl AU64 {
// Converts this `AU64` to bytes using this platform's endianness.
pub(crate) fn to_bytes(self) -> [u8; 8] {
crate::transmute!(self)
}
}
impl Display for AU64 {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
Display::fmt(&self.0, f)
}
}
#[derive(
FromZeroes, FromBytes, Eq, PartialEq, Ord, PartialOrd, Default, Debug, Copy, Clone,
)]
#[repr(C)]
pub(crate) struct Nested<T, U: ?Sized> {
_t: T,
_u: U,
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_round_down_to_next_multiple_of_alignment() {
fn alt_impl(n: usize, align: NonZeroUsize) -> usize {
let mul = n / align.get();
mul * align.get()
}
for align in [1, 2, 4, 8, 16] {
for n in 0..256 {
let align = NonZeroUsize::new(align).unwrap();
let want = alt_impl(n, align);
let got = round_down_to_next_multiple_of_alignment(n, align);
assert_eq!(got, want, "round_down_to_next_multiple_of_alignment({n}, {align})");
}
}
}
}
#[cfg(kani)]
mod proofs {
use super::*;
#[kani::proof]
fn prove_round_down_to_next_multiple_of_alignment() {
fn model_impl(n: usize, align: NonZeroUsize) -> usize {
assert!(align.get().is_power_of_two());
let mul = n / align.get();
mul * align.get()
}
let align: NonZeroUsize = kani::any();
kani::assume(align.get().is_power_of_two());
let n: usize = kani::any();
let expected = model_impl(n, align);
let actual = round_down_to_next_multiple_of_alignment(n, align);
assert_eq!(expected, actual, "round_down_to_next_multiple_of_alignment({n}, {align})");
}
// Restricted to nightly since we use the unstable `usize::next_multiple_of`
// in our model implementation.
#[cfg(__INTERNAL_USE_ONLY_NIGHLTY_FEATURES_IN_TESTS)]
#[kani::proof]
fn prove_padding_needed_for() {
fn model_impl(len: usize, align: NonZeroUsize) -> usize {
let padded = len.next_multiple_of(align.get());
let padding = padded - len;
padding
}
let align: NonZeroUsize = kani::any();
kani::assume(align.get().is_power_of_two());
let len: usize = kani::any();
// Constrain `len` to valid Rust lengths, since our model implementation
// isn't robust to overflow.
kani::assume(len <= isize::MAX as usize);
kani::assume(align.get() < 1 << 29);
let expected = model_impl(len, align);
let actual = core_layout::padding_needed_for(len, align);
assert_eq!(expected, actual, "padding_needed_for({len}, {align})");
let padded_len = actual + len;
assert_eq!(padded_len % align, 0);
assert!(padded_len / align >= len / align);
}
}