1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
// This file is part of ICU4X. For terms of use, please see the file
// called LICENSE at the top level of the ICU4X source tree
// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).
//! Custom derives for `ZeroFrom` from the `zerofrom` crate.
// https://github.com/unicode-org/icu4x/blob/main/docs/process/boilerplate.md#library-annotations
#![cfg_attr(
not(test),
deny(
clippy::indexing_slicing,
clippy::unwrap_used,
clippy::expect_used,
clippy::panic,
clippy::exhaustive_structs,
clippy::exhaustive_enums,
missing_debug_implementations,
)
)]
use core::mem;
use proc_macro::TokenStream;
use proc_macro2::{Span, TokenStream as TokenStream2};
use quote::quote;
use std::collections::{HashMap, HashSet};
use syn::fold::{self, Fold};
use syn::punctuated::Punctuated;
use syn::spanned::Spanned;
use syn::{
parse_macro_input, parse_quote, DeriveInput, Ident, Lifetime, MetaList, Token, Type, TypePath,
WherePredicate,
};
use synstructure::Structure;
mod visitor;
/// Custom derive for `zerofrom::ZeroFrom`,
///
/// This implements `ZeroFrom<Ty> for Ty` for types
/// without a lifetime parameter, and `ZeroFrom<Ty<'data>> for Ty<'static>`
/// for types with a lifetime parameter.
///
/// Apply the `#[zerofrom(clone)]` attribute to a field if it doesn't implement
/// Copy or ZeroFrom; this data will be cloned when the struct is zero_from'ed.
///
/// Apply the `#[zerofrom(maybe_borrow(T, U, V))]` attribute to the struct to indicate
/// that certain type parameters may themselves contain borrows (by default
/// the derives assume that type parameters perform no borrows and can be copied or cloned).
///
/// In rust versions where [this issue](https://github.com/rust-lang/rust/issues/114393) is fixed,
/// `#[zerofrom(may_borrow)]` can be applied directly to type parameters.
#[proc_macro_derive(ZeroFrom, attributes(zerofrom))]
pub fn zf_derive(input: TokenStream) -> TokenStream {
let input = parse_macro_input!(input as DeriveInput);
TokenStream::from(zf_derive_impl(&input))
}
fn has_attr(attrs: &[syn::Attribute], name: &str) -> bool {
attrs.iter().any(|a| {
if let Ok(i) = a.parse_args::<Ident>() {
if i == name {
return true;
}
}
false
})
}
// Collects all idents from #[zerofrom(may_borrow(A, B, C, D))]
// needed since #[zerofrom(may_borrow)] doesn't work yet
// (https://github.com/rust-lang/rust/issues/114393)
fn get_may_borrow_attr(attrs: &[syn::Attribute]) -> Result<HashSet<Ident>, Span> {
let mut params = HashSet::new();
for attr in attrs {
if let Ok(list) = attr.parse_args::<MetaList>() {
if list.path.is_ident("may_borrow") {
if let Ok(list) =
list.parse_args_with(Punctuated::<Ident, Token![,]>::parse_terminated)
{
params.extend(list)
} else {
return Err(attr.span());
}
}
}
}
Ok(params)
}
fn zf_derive_impl(input: &DeriveInput) -> TokenStream2 {
let mut tybounds = input
.generics
.type_params()
.map(|ty| {
// Strip out param defaults, we don't need them in the impl
let mut ty = ty.clone();
ty.eq_token = None;
ty.default = None;
ty
})
.collect::<Vec<_>>();
let typarams = tybounds
.iter()
.map(|ty| ty.ident.clone())
.collect::<Vec<_>>();
let lts = input.generics.lifetimes().count();
let name = &input.ident;
let structure = Structure::new(input);
let may_borrow_attrs = match get_may_borrow_attr(&input.attrs) {
Ok(mb) => mb,
Err(span) => {
return syn::Error::new(
span,
"#[zerofrom(may_borrow)] on the struct takes in a comma separated list of type parameters, like so: `#[zerofrom(may_borrow(A, B, C, D)]`",
).to_compile_error();
}
};
// This contains every generic type introduced in this code.
// If the gneeric type is may_borrow, this additionally contains the identifier corresponding to
// a newly introduced mirror type parameter that we are borrowing from, similar to C in the original trait.
// For convenience, we are calling these "C types"
let generics_env: HashMap<Ident, Option<Ident>> = tybounds
.iter()
.map(|param| {
// First one doesn't work yet https://github.com/rust-lang/rust/issues/114393
let maybe_new_param = if has_attr(¶m.attrs, "may_borrow")
|| may_borrow_attrs.contains(¶m.ident)
{
Some(Ident::new(
&format!("{}ZFParamC", param.ident),
param.ident.span(),
))
} else {
None
};
(param.ident.clone(), maybe_new_param)
})
.collect();
// Do any of the generics potentially borrow?
let generics_may_borrow = generics_env.values().any(|x| x.is_some());
if lts == 0 && !generics_may_borrow {
let has_clone = structure
.variants()
.iter()
.flat_map(|variant| variant.bindings().iter())
.any(|binding| has_attr(&binding.ast().attrs, "clone"));
let (clone, clone_trait) = if has_clone {
(quote!(this.clone()), quote!(Clone))
} else {
(quote!(*this), quote!(Copy))
};
let bounds: Vec<WherePredicate> = typarams
.iter()
.map(|ty| parse_quote!(#ty: #clone_trait + 'static))
.collect();
quote! {
impl<'zf, #(#tybounds),*> zerofrom::ZeroFrom<'zf, #name<#(#typarams),*>> for #name<#(#typarams),*> where #(#bounds),* {
fn zero_from(this: &'zf Self) -> Self {
#clone
}
}
}
} else {
if lts > 1 {
return syn::Error::new(
input.generics.span(),
"derive(ZeroFrom) cannot have multiple lifetime parameters",
)
.to_compile_error();
}
let mut zf_bounds: Vec<WherePredicate> = vec![];
let body = structure.each_variant(|vi| {
vi.construct(|f, i| {
let binding = format!("__binding_{i}");
let field = Ident::new(&binding, Span::call_site());
if has_attr(&f.attrs, "clone") {
quote! {
#field.clone()
}
} else {
// the field type
let fty = replace_lifetime(&f.ty, custom_lt("'zf"));
// the corresponding lifetimey type we are borrowing from (effectively, the C type)
let lifetime_ty =
replace_lifetime_and_type(&f.ty, custom_lt("'zf_inner"), &generics_env);
let (has_ty, has_lt) = visitor::check_type_for_parameters(&f.ty, &generics_env);
if has_ty {
// For types without type parameters, the compiler can figure out that the field implements
// ZeroFrom on its own. However, if there are type parameters, there may be complex preconditions
// to `FieldTy: ZeroFrom` that need to be satisfied. We get them to be satisfied by requiring
// `FieldTy<'zf>: ZeroFrom<'zf, FieldTy<'zf_inner>>`
if has_lt {
zf_bounds
.push(parse_quote!(#fty: zerofrom::ZeroFrom<'zf, #lifetime_ty>));
} else {
zf_bounds.push(parse_quote!(#fty: zerofrom::ZeroFrom<'zf, #fty>));
}
}
if has_ty || has_lt {
// By doing this we essentially require ZF to be implemented
// on all fields
quote! {
<#fty as zerofrom::ZeroFrom<'zf, #lifetime_ty>>::zero_from(#field)
}
} else {
// No lifetimes, so we can just copy
quote! { *#field }
}
}
})
});
// Due to the possibility of generics_may_borrow, we might reach here with no lifetimes on self,
// don't accidentally feed them to self later
let (maybe_zf_lifetime, maybe_zf_inner_lifetime) = if lts == 0 {
(quote!(), quote!())
} else {
(quote!('zf,), quote!('zf_inner,))
};
// Array of C types. Only different if generics are allowed to borrow
let mut typarams_c = typarams.clone();
if generics_may_borrow {
for typaram_c in &mut typarams_c {
if let Some(Some(replacement)) = generics_env.get(typaram_c) {
// we use mem::replace here so we can be really clear about the C vs the T type
let typaram_t = mem::replace(typaram_c, replacement.clone());
zf_bounds
.push(parse_quote!(#typaram_c: zerofrom::ZeroFrom<'zf_inner, #typaram_t>));
tybounds.push(parse_quote!(#typaram_c));
}
}
}
quote! {
impl<'zf, 'zf_inner, #(#tybounds),*> zerofrom::ZeroFrom<'zf, #name<#maybe_zf_inner_lifetime #(#typarams_c),*>> for #name<#maybe_zf_lifetime #(#typarams),*>
where
#(#zf_bounds,)* {
fn zero_from(this: &'zf #name<#maybe_zf_inner_lifetime #(#typarams_c),*>) -> Self {
match *this { #body }
}
}
}
}
}
fn custom_lt(s: &str) -> Lifetime {
Lifetime::new(s, Span::call_site())
}
/// Replace all lifetimes in a type with a specified one
fn replace_lifetime(x: &Type, lt: Lifetime) -> Type {
struct ReplaceLifetime(Lifetime);
impl Fold for ReplaceLifetime {
fn fold_lifetime(&mut self, _: Lifetime) -> Lifetime {
self.0.clone()
}
}
ReplaceLifetime(lt).fold_type(x.clone())
}
/// Replace all lifetimes in a type with a specified one, AND replace all types that have a corresponding C type
/// with the C type
fn replace_lifetime_and_type(
x: &Type,
lt: Lifetime,
generics_env: &HashMap<Ident, Option<Ident>>,
) -> Type {
struct ReplaceLifetimeAndTy<'a>(Lifetime, &'a HashMap<Ident, Option<Ident>>);
impl Fold for ReplaceLifetimeAndTy<'_> {
fn fold_lifetime(&mut self, _: Lifetime) -> Lifetime {
self.0.clone()
}
fn fold_type_path(&mut self, i: TypePath) -> TypePath {
if i.qself.is_none() {
if let Some(ident) = i.path.get_ident() {
if let Some(Some(replacement)) = self.1.get(ident) {
return parse_quote!(#replacement);
}
}
}
fold::fold_type_path(self, i)
}
}
ReplaceLifetimeAndTy(lt, generics_env).fold_type(x.clone())
}