Struct bevy_math::Rect

source ·
#[repr(C)]
pub struct Rect { pub min: Vec2, pub max: Vec2, }
Expand description

A rectangle defined by two opposite corners.

The rectangle is axis aligned, and defined by its minimum and maximum coordinates, stored in Rect::min and Rect::max, respectively. The minimum/maximum invariant must be upheld by the user when directly assigning the fields, otherwise some methods produce invalid results. It is generally recommended to use one of the constructor methods instead, which will ensure this invariant is met, unless you already have the minimum and maximum corners.

Fields§

§min: Vec2

The minimum corner point of the rect.

§max: Vec2

The maximum corner point of the rect.

Implementations§

source§

impl Rect

source

pub fn new(x0: f32, y0: f32, x1: f32, y1: f32) -> Self

Create a new rectangle from two corner points.

The two points do not need to be the minimum and/or maximum corners. They only need to be two opposite corners.

Examples
let r = Rect::new(0., 4., 10., 6.); // w=10 h=2
let r = Rect::new(2., 3., 5., -1.); // w=3 h=4
source

pub fn from_corners(p0: Vec2, p1: Vec2) -> Self

Create a new rectangle from two corner points.

The two points do not need to be the minimum and/or maximum corners. They only need to be two opposite corners.

Examples
// Unit rect from [0,0] to [1,1]
let r = Rect::from_corners(Vec2::ZERO, Vec2::ONE); // w=1 h=1
// Same; the points do not need to be ordered
let r = Rect::from_corners(Vec2::ONE, Vec2::ZERO); // w=1 h=1
source

pub fn from_center_size(origin: Vec2, size: Vec2) -> Self

Create a new rectangle from its center and size.

Panics

This method panics if any of the components of the size is negative.

Examples
let r = Rect::from_center_size(Vec2::ZERO, Vec2::ONE); // w=1 h=1
assert!(r.min.abs_diff_eq(Vec2::splat(-0.5), 1e-5));
assert!(r.max.abs_diff_eq(Vec2::splat(0.5), 1e-5));
source

pub fn from_center_half_size(origin: Vec2, half_size: Vec2) -> Self

Create a new rectangle from its center and half-size.

Panics

This method panics if any of the components of the half-size is negative.

Examples
let r = Rect::from_center_half_size(Vec2::ZERO, Vec2::ONE); // w=2 h=2
assert!(r.min.abs_diff_eq(Vec2::splat(-1.), 1e-5));
assert!(r.max.abs_diff_eq(Vec2::splat(1.), 1e-5));
source

pub fn is_empty(&self) -> bool

Check if the rectangle is empty.

Examples
let r = Rect::from_corners(Vec2::ZERO, Vec2::new(0., 1.)); // w=0 h=1
assert!(r.is_empty());
source

pub fn width(&self) -> f32

Rectangle width (max.x - min.x).

Examples
let r = Rect::new(0., 0., 5., 1.); // w=5 h=1
assert!((r.width() - 5.).abs() <= 1e-5);
source

pub fn height(&self) -> f32

Rectangle height (max.y - min.y).

Examples
let r = Rect::new(0., 0., 5., 1.); // w=5 h=1
assert!((r.height() - 1.).abs() <= 1e-5);
source

pub fn size(&self) -> Vec2

Rectangle size.

Examples
let r = Rect::new(0., 0., 5., 1.); // w=5 h=1
assert!(r.size().abs_diff_eq(Vec2::new(5., 1.), 1e-5));
source

pub fn half_size(&self) -> Vec2

Rectangle half-size.

Examples
let r = Rect::new(0., 0., 5., 1.); // w=5 h=1
assert!(r.half_size().abs_diff_eq(Vec2::new(2.5, 0.5), 1e-5));
source

pub fn center(&self) -> Vec2

The center point of the rectangle.

Examples
let r = Rect::new(0., 0., 5., 1.); // w=5 h=1
assert!(r.center().abs_diff_eq(Vec2::new(2.5, 0.5), 1e-5));
source

pub fn contains(&self, point: Vec2) -> bool

Check if a point lies within this rectangle, inclusive of its edges.

Examples
let r = Rect::new(0., 0., 5., 1.); // w=5 h=1
assert!(r.contains(r.center()));
assert!(r.contains(r.min));
assert!(r.contains(r.max));
source

pub fn union(&self, other: Self) -> Self

Build a new rectangle formed of the union of this rectangle and another rectangle.

The union is the smallest rectangle enclosing both rectangles.

Examples
let r1 = Rect::new(0., 0., 5., 1.); // w=5 h=1
let r2 = Rect::new(1., -1., 3., 3.); // w=2 h=4
let r = r1.union(r2);
assert!(r.min.abs_diff_eq(Vec2::new(0., -1.), 1e-5));
assert!(r.max.abs_diff_eq(Vec2::new(5., 3.), 1e-5));
source

pub fn union_point(&self, other: Vec2) -> Self

Build a new rectangle formed of the union of this rectangle and a point.

The union is the smallest rectangle enclosing both the rectangle and the point. If the point is already inside the rectangle, this method returns a copy of the rectangle.

Examples
let r = Rect::new(0., 0., 5., 1.); // w=5 h=1
let u = r.union_point(Vec2::new(3., 6.));
assert!(u.min.abs_diff_eq(Vec2::ZERO, 1e-5));
assert!(u.max.abs_diff_eq(Vec2::new(5., 6.), 1e-5));
source

pub fn intersect(&self, other: Self) -> Self

Build a new rectangle formed of the intersection of this rectangle and another rectangle.

The intersection is the largest rectangle enclosed in both rectangles. If the intersection is empty, this method returns an empty rectangle (Rect::is_empty() returns true), but the actual values of Rect::min and Rect::max are implementation-dependent.

Examples
let r1 = Rect::new(0., 0., 5., 1.); // w=5 h=1
let r2 = Rect::new(1., -1., 3., 3.); // w=2 h=4
let r = r1.intersect(r2);
assert!(r.min.abs_diff_eq(Vec2::new(1., 0.), 1e-5));
assert!(r.max.abs_diff_eq(Vec2::new(3., 1.), 1e-5));
source

pub fn inset(&self, inset: f32) -> Self

Create a new rectangle with a constant inset.

The inset is the extra border on all sides. A positive inset produces a larger rectangle, while a negative inset is allowed and produces a smaller rectangle. If the inset is negative and its absolute value is larger than the rectangle half-size, the created rectangle is empty.

Examples
let r = Rect::new(0., 0., 5., 1.); // w=5 h=1
let r2 = r.inset(3.); // w=11 h=7
assert!(r2.min.abs_diff_eq(Vec2::splat(-3.), 1e-5));
assert!(r2.max.abs_diff_eq(Vec2::new(8., 4.), 1e-5));

let r = Rect::new(0., -1., 6., 7.); // w=6 h=8
let r2 = r.inset(-2.); // w=11 h=7
assert!(r2.min.abs_diff_eq(Vec2::new(2., 1.), 1e-5));
assert!(r2.max.abs_diff_eq(Vec2::new(4., 5.), 1e-5));
source

pub fn normalize(&self, other: Self) -> Self

Build a new rectangle from this one with its coordinates expressed relative to other in a normalized ([0..1] x [0..1]) coordinate system.

Examples
let r = Rect::new(2., 3., 4., 6.);
let s = Rect::new(0., 0., 10., 10.);
let n = r.normalize(s);

assert_eq!(n.min.x, 0.2);
assert_eq!(n.min.y, 0.3);
assert_eq!(n.max.x, 0.4);
assert_eq!(n.max.y, 0.6);
source

pub fn as_irect(&self) -> IRect

Returns self as IRect (i32)

source

pub fn as_urect(&self) -> URect

Returns self as URect (u32)

Trait Implementations§

source§

impl Clone for Rect

source§

fn clone(&self) -> Rect

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Debug for Rect

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl Default for Rect

source§

fn default() -> Rect

Returns the “default value” for a type. Read more
source§

impl<'de> Deserialize<'de> for Rect

source§

fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>
where __D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
source§

impl PartialEq for Rect

source§

fn eq(&self, other: &Rect) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl Serialize for Rect

source§

fn serialize<__S>(&self, __serializer: __S) -> Result<__S::Ok, __S::Error>
where __S: Serializer,

Serialize this value into the given Serde serializer. Read more
source§

impl Copy for Rect

source§

impl StructuralPartialEq for Rect

Auto Trait Implementations§

§

impl RefUnwindSafe for Rect

§

impl Send for Rect

§

impl Sync for Rect

§

impl Unpin for Rect

§

impl UnwindSafe for Rect

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<T> DeserializeOwned for T
where T: for<'de> Deserialize<'de>,