Struct bevy_internal::utils::tracing::Level
source · pub struct Level(/* private fields */);
Expand description
Describes the level of verbosity of a span or event.
Comparing Levels
Level
implements the PartialOrd
and Ord
traits, allowing two
Level
s to be compared to determine which is considered more or less
verbose. Levels which are more verbose are considered “greater than” levels
which are less verbose, with Level::ERROR
considered the lowest, and
Level::TRACE
considered the highest.
For example:
use tracing_core::Level;
assert!(Level::TRACE > Level::DEBUG);
assert!(Level::ERROR < Level::WARN);
assert!(Level::INFO <= Level::DEBUG);
assert_eq!(Level::TRACE, Level::TRACE);
Filtering
Level
s are typically used to implement filtering that determines which
spans and events are enabled. Depending on the use case, more or less
verbose diagnostics may be desired. For example, when running in
development, DEBUG
-level traces may be enabled by default. When running in
production, only INFO
-level and lower traces might be enabled. Libraries
may include very verbose diagnostics at the DEBUG
and/or TRACE
levels.
Applications using those libraries typically chose to ignore those traces. However, when
debugging an issue involving said libraries, it may be useful to temporarily
enable the more verbose traces.
The LevelFilter
type is provided to enable filtering traces by
verbosity. Level
s can be compared against LevelFilter
s, and
LevelFilter
has a variant for each Level
, which compares analogously
to that level. In addition, LevelFilter
adds a LevelFilter::OFF
variant, which is considered “less verbose” than every other Level
. This is
intended to allow filters to completely disable tracing in a particular context.
For example:
use tracing_core::{Level, LevelFilter};
assert!(LevelFilter::OFF < Level::TRACE);
assert!(LevelFilter::TRACE > Level::DEBUG);
assert!(LevelFilter::ERROR < Level::WARN);
assert!(LevelFilter::INFO <= Level::DEBUG);
assert!(LevelFilter::INFO >= Level::INFO);
Examples
Below is a simple example of how a Subscriber
could implement filtering through
a LevelFilter
. When a span or event is recorded, the Subscriber::enabled
method
compares the span or event’s Level
against the configured LevelFilter
.
The optional Subscriber::max_level_hint
method can also be implemented to allow spans
and events above a maximum verbosity level to be skipped more efficiently,
often improving performance in short-lived programs.
use tracing_core::{span, Event, Level, LevelFilter, Subscriber, Metadata};
#[derive(Debug)]
pub struct MySubscriber {
/// The most verbose level that this subscriber will enable.
max_level: LevelFilter,
// ...
}
impl MySubscriber {
/// Returns a new `MySubscriber` which will record spans and events up to
/// `max_level`.
pub fn with_max_level(max_level: LevelFilter) -> Self {
Self {
max_level,
// ...
}
}
}
impl Subscriber for MySubscriber {
fn enabled(&self, meta: &Metadata<'_>) -> bool {
// A span or event is enabled if it is at or below the configured
// maximum level.
meta.level() <= &self.max_level
}
// This optional method returns the most verbose level that this
// subscriber will enable. Although implementing this method is not
// *required*, it permits additional optimizations when it is provided,
// allowing spans and events above the max level to be skipped
// more efficiently.
fn max_level_hint(&self) -> Option<LevelFilter> {
Some(self.max_level)
}
// Implement the rest of the subscriber...
fn new_span(&self, span: &span::Attributes<'_>) -> span::Id {
// ...
}
fn event(&self, event: &Event<'_>) {
// ...
}
// ...
}
It is worth noting that the tracing-subscriber
crate provides additional
APIs for performing more sophisticated filtering, such as
enabling different levels based on which module or crate a span or event is
recorded in.
Implementations§
Trait Implementations§
source§impl From<Level> for LevelFilter
impl From<Level> for LevelFilter
source§fn from(level: Level) -> LevelFilter
fn from(level: Level) -> LevelFilter
source§impl Ord for Level
impl Ord for Level
source§impl PartialEq<Level> for LevelFilter
impl PartialEq<Level> for LevelFilter
source§impl PartialEq<LevelFilter> for Level
impl PartialEq<LevelFilter> for Level
source§fn eq(&self, other: &LevelFilter) -> bool
fn eq(&self, other: &LevelFilter) -> bool
self
and other
values to be equal, and is used
by ==
.source§impl PartialEq for Level
impl PartialEq for Level
source§impl PartialOrd<Level> for LevelFilter
impl PartialOrd<Level> for LevelFilter
source§impl PartialOrd<LevelFilter> for Level
impl PartialOrd<LevelFilter> for Level
source§fn partial_cmp(&self, other: &LevelFilter) -> Option<Ordering>
fn partial_cmp(&self, other: &LevelFilter) -> Option<Ordering>
source§fn lt(&self, other: &LevelFilter) -> bool
fn lt(&self, other: &LevelFilter) -> bool
source§fn le(&self, other: &LevelFilter) -> bool
fn le(&self, other: &LevelFilter) -> bool
self
and other
) and is used by the <=
operator. Read moresource§fn gt(&self, other: &LevelFilter) -> bool
fn gt(&self, other: &LevelFilter) -> bool
source§impl PartialOrd for Level
impl PartialOrd for Level
impl Copy for Level
impl Eq for Level
impl StructuralEq for Level
impl StructuralPartialEq for Level
Auto Trait Implementations§
impl RefUnwindSafe for Level
impl Send for Level
impl Sync for Level
impl Unpin for Level
impl UnwindSafe for Level
Blanket Implementations§
source§impl<T, U> AsBindGroupShaderType<U> for T
impl<T, U> AsBindGroupShaderType<U> for T
source§fn as_bind_group_shader_type(&self, _images: &RenderAssets<Image>) -> U
fn as_bind_group_shader_type(&self, _images: &RenderAssets<Image>) -> U
T
ShaderType
for self
. When used in AsBindGroup
derives, it is safe to assume that all images in self
exist.source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<Q, K> Comparable<K> for Q
impl<Q, K> Comparable<K> for Q
source§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
source§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Box<dyn Trait>
(where Trait: Downcast
) to Box<dyn Any>
. Box<dyn Any>
can
then be further downcast
into Box<ConcreteType>
where ConcreteType
implements Trait
.source§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Rc<Trait>
(where Trait: Downcast
) to Rc<Any>
. Rc<Any>
can then be
further downcast
into Rc<ConcreteType>
where ConcreteType
implements Trait
.source§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
&Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &Any
’s vtable from &Trait
’s.source§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
&mut Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &mut Any
’s vtable from &mut Trait
’s.source§impl<T> DowncastSync for T
impl<T> DowncastSync for T
source§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
source§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
source§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
key
and return true
if they are equal.